满分5 > 高中数学试题 >

如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=...

manfen5.com 满分网如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为    ;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为   
正方形PABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动. 【解析】 从某一个顶点(比如A)落在x轴上的时候开始计算,到下一次A点落在x轴上, 这个过程中四个顶点依次落在了x轴上,而每两个顶点间距离为正方形的边长1,因此该函数的周期为4. 下面考察P点的运动轨迹,不妨考察正方形向右滚动, P点从x轴上开始运动的时候,首先是围绕A点运动个圆,该圆半径为1, 然后以B点为中心,滚动到C点落地,其间是以BP为半径,旋转90°, 然后以C为圆心,再旋转90°,这时候以CP为半径, 因此最终构成图象如下: S==π+1 故答案为:4,π+1
复制答案
考点分析:
相关试题推荐
我们知道,在平面中,如果一个凸多边形有内切圆,那么凸多边形的面积S、周长c与内切圆半径r之间的关系为manfen5.com 满分网.类比这个结论,在空间中,果已知一个凸多面体有内切球,且内切球半径为R,那么凸多面体的体积V、表面积S'与内切球半径R之间的关系是    查看答案
已知向量manfen5.com 满分网=(-3,2),manfen5.com 满分网=(-1,0),若,(λmanfen5.com 满分网+manfen5.com 满分网)⊥manfen5.com 满分网,则实数λ的值为    查看答案
已知cosα=-manfen5.com 满分网,α∈(manfen5.com 满分网,π),则manfen5.com 满分网等于    查看答案
已知x是函数manfen5.com 满分网的一个零点,若x1∈(1,x),x2∈(x,+∞),则( )
A.f(x1)<0,f(x2)<0
B.f(x1)>0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)<0,f(x2)>0
查看答案
如果不等式组manfen5.com 满分网表示的平面区域是一个直角三角形,则该三角形的面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.