由题意可得 f (2)=0,且在(0,+∞)上单调递减,故当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0.由此易求得(x-1)•f(x+1)>0的解集.
【解析】
∵函数f(x)是奇函数,在区间(-∞,0)上单调递减,且f (2)=0,
∴f (-2)=-f(2)=0,且在(0,+∞)上单调递减
故当x<-2或0<x<2 时,f(x)>0,当-2<x<0或x>2时,f(x)>0.
由不等式(x-1)•f(x+1)>0可得x-1与f(x+1)同号.
∴或
∴或
解不等式可得,-3<x<-1
∴不等式的解集为 (-3,-1)
故选C