函数即,表示椭圆的上半圆,与x轴的交点坐标为(-2,0),(2,0),设z=2x-y,即y=2x-z,几何意义是直线在y轴上截距的相反数,当直线与曲线相切时,纵截距最大,过(2,0)时,纵截距最小.
【解析】
函数即,表示椭圆的上半圆,与x轴的交点坐标为(-2,0),(2,0)
设z=2x-y,即y=2x-z,几何意义是直线在y轴上截距的相反数,当直线与曲线相切时,纵截距最大,过(2,0)时,纵截距最小
将y=2x-z代入曲线方程,消元可得25x2-16xz+4z2-36=0
令△=256z2-100(4z2-36)=0,解得z=±5,∴纵截距最大为5,∴2x-y的最小值为-5
将(2,0)代入z=2x-y,可得z=4,,∴2x-y的最大值为4
∴2x-y的最大值与最小值之比为
故答案为: