满分5 > 高中数学试题 >

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切...

已知椭圆manfen5.com 满分网(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴为半径的圆与直线manfen5.com 满分网相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P(4,0),M,N是椭圆C上关于x轴对称的任意两个不同的点,连接PN交椭圆C于另一点E,求直线PN的斜率的取值范围;
(Ⅲ)在(Ⅱ)的条件下,证明直线ME与x轴相交于定点.
(Ⅰ)由题意知,所以a2=4b2,由此可知椭圆C的方程为. (Ⅱ)由题意知直线PN的斜率存在,设直线PN的方程为y=k(x-4).由题设得(4k2+1)x2-32k2x+64k2-4=0.由此入手可知直线PN的斜率的取值范围是:. (Ⅲ)设点N(x1,y1),E(x2,y2),则M(x1,-y1).直线ME的方程为.令y=0,得.由此入手可知直线ME与x轴相交于定点(1,0). 【解析】 (Ⅰ)由题意知, 所以,即a2=4b2,∴a=2b 又因为,∴a=2,故椭圆C的方程为.(4分) (Ⅱ)由题意知直线PN的斜率存在,设直线PN的方程为y=k(x-4). 由得(4k2+1)x2-32k2x+64k2-4=0.①(6分) 由△=(-32k2)2-4(4k2+1)(64k2-4)>0,得12k2-1<0,∴(8分) 又k=0不合题意,所以直线PN的斜率的取值范围是:.(9分) (Ⅲ)设点N(x1,y1),E(x2,y2),则M(x1,-y1). 直线ME的方程为.令y=0,得.(11分) 将y1=k(x1-4),y2=k(x2-4)代入整理,得.② 由①得,代入②整理,得x=1.(13分) 所以直线ME与x轴相交于定点(1,0).(14分)
复制答案
考点分析:
相关试题推荐
已知圆A的圆心为(manfen5.com 满分网,0),半径为1,双曲线C的两条渐近线都过原点,且与圆A相切,双曲线C的一个顶点A′与点A关于直线y=x对称.
(1)求双曲线C的方程;
(2)设直线l过点A,斜率为k,当0<k<1时,双曲线C的上支上有且仅有一点B到直线l的距离为manfen5.com 满分网,试求k的值及此时点B的坐标.
查看答案
1.某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:
产品
时间
工艺要求
生产能力台时/天
制白坯时间612120
油漆时间8464
单位利润200240 
问该公司如何安排这两种产品的生产,才能获得最大的利润.最大利润是多少?
查看答案
已知曲线C:x2+y2-2x-4y+m=0.
(1)当m为何值时,曲线C表示圆;
(2)若曲线C与直线x+2y-4=0交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.
查看答案
已知直线l经过直线2x+y-5=0与x-2y=0的交点,
(1)点A(5,0)到l的距离为3,求l的方程;
(2)求点A(5,0)到l的距离的最大值.
查看答案
已知圆C的圆心坐标为(2,-1),且与x轴相切.
(1)求圆C的方程;
(2)求过点P(3,2)且与圆C相切的直线方程;
(3)若直线过点P(3,2)且与圆C相切于点Q,求线段PQ的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.