满分5 > 高中数学试题 >

在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1). ...

在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(manfen5.com 满分网)•manfen5.com 满分网=0,求t的值.
(1)(方法一)由题设知,则. 从而得:. (方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则: 由E是AC,BD的中点,易得D(1,4) 从而得:BC=、AD=; (2)由题设知:=(-2,-1),. 由()•=0,得:(3+2t,5+t)•(-2,-1)=0, 从而得:. 或者由,,得: 【解析】 (1)(方法一)由题设知,则. 所以. 故所求的两条对角线的长分别为、. (方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则: E为B、C的中点,E(0,1) 又E(0,1)为A、D的中点,所以D(1,4) 故所求的两条对角线的长分别为BC=、AD=; (2)由题设知:=(-2,-1),. 由()•=0,得:(3+2t,5+t)•(-2,-1)=0, 从而5t=-11,所以. 或者:,,
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
查看答案
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:
(1)仓库面积S的最大允许值是多少?
(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知函数f(x)=sin2x-2sin2x
(I)求函数f(x)的最小正周期.
(II)求函数f(x)的最大值及f(x)取最大值时x的集合.
查看答案
设{an}是等比数列,公比manfen5.com 满分网,Sn为{an}的前n项和.记manfen5.com 满分网.设manfen5.com 满分网为数列{Tn}的最大项,则n=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.