满分5 > 高中数学试题 >

设函数R),函数f(x)的导数记为f'(x). (1)若a=f'(2),b=f'...

设函数manfen5.com 满分网R),函数f(x)的导数记为f'(x).
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的条件下,记manfen5.com 满分网,求证:F(1)+F(2)+F(3)+…+F(n)<manfen5.com 满分网N*);
(3)设关于x的方程f'(x)=0的两个实数根为α、β,且1<α<β<2.试问:是否存在正整数n,使得manfen5.com 满分网?说明理由.
(1)求出f'(x)=x2+ax+b,由 a=f'(2),b=f'(1),c=f'(0),求出a=-1,b=c=-3. (2)根据,F(1)和 F(2)都小于,且F(1)+F(2)=0,当n≥3时,F(n)<  ( ),用放缩法证明F(1)+F(2)+F(3)+…+F(n)<…+<. (3)根据 f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β)=(α-1)(2-α)(β-1)(2-β )≤=,可得,或,故存在n=1或2, 使. 【解析】 (1)f'(x)=x2+ax+b,由已知可得a=-1,b=c=-3.…(4分) (2), 当n=1时,;当n=2时,; 当n≥3时,. 所以F(1)+F(2)+F(3)+…+F(n)<F(1)+F(2)+…+ =(1++--- )< (1++ )=, 所以F(1)+F(2)+F(3)+…+F(n)<N*).…(9分) (3)根据题设,可令f'(x)=(x-α)(x-β). ∴f'(1)•f'(2)=(1-α)(1-β)(2-α)(2-β) =, ∴,或,所以存在n=1或2,使.…(13分).
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足(manfen5.com 满分网)•manfen5.com 满分网=0,求t的值.
查看答案
已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
查看答案
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:
(1)仓库面积S的最大允许值是多少?
(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案
已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
查看答案
已知函数f(x)=sin2x-2sin2x
(I)求函数f(x)的最小正周期.
(II)求函数f(x)的最大值及f(x)取最大值时x的集合.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.