满分5 > 高中数学试题 >

已知函数f(x)=lnx-ax(a∈R). (1)求f(x)的单调区间; (2)...

已知函数f(x)=lnx-ax(a∈R).
(1)求f(x)的单调区间;
(2)若a=1,且b≠0,函数manfen5.com 满分网,若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)=g(x2),求实数b的取值范围.
(1)先确定函数f(x)的定义域,然后对函数f(x)求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减求出单调区间. (2)分别表示出函数f(x)、g(x)的值域,根据f(x)的值域应为g(x)的值域的子集可得答案. 【解析】 (1)f(x)=lnx-ax, ∴x>0,即函数f(x)的定义域为(0,+∞) ∴当a≤0时,f(x)在(0,+∞)上是增函数 当a>0时,∵f'(x)== ∵ 即当a>0时上是增函数,在上是减函数. (2)设f(x)的值域为A,g(x)的值域为B, 则由已知,对于任意的x1∈(1,2),总存在x2∈(1,2), 使f(x1)=g(x2),得A⊆B 由(1)知a=1时,f(x)在(1,+∞)上是减函数, ∴f(x)在x∈(1,2)上单调递减, ∴f(x)的值域为A=(ln2-2,-1) ∵g'(x)=bx2-b=b(x-1)(x+1) ∴(i)当b<0时,g(x)在(1,2)上是减函数, 此时,g(x)的值域为 为满足 ∴即 (ii)当b>0时,g(x)在(1,2)上是单调递增函数, 此时,g(x)的值域为 为满足 ∴ ∴, 综上可知b的取值范围是
复制答案
考点分析:
相关试题推荐
已知函数m(x)=2ax2manfen5.com 满分网,且函数h(x)在manfen5.com 满分网时取极大值,若f(x)=h(x)+m(x)
(1)当manfen5.com 满分网时,求函数f(x)在[-2,2]上的最大值和最小值;
(2)令g(x)=ln(x+1)+3-f'(x),若g(x)在manfen5.com 满分网上单调递增,求实数a的取值范围.
查看答案
已知数列{an}前n项和为Sn,且满足manfen5.com 满分网,an+2SnSn-1=0(n≥2)
(1)求证:manfen5.com 满分网是等差数列;
(2)求数列{an}的通项公式;
(3)记数列{bn}的通项公式manfen5.com 满分网,Tn=b1+b2+…+bnmanfen5.com 满分网(m∈z)恒成立,求m的最小值.
查看答案
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40manfen5.com 满分网海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ(其中sinθ=manfen5.com 满分网,0°<θ<90°)且与点A相距10manfen5.com 满分网海里的位置C.
(I)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求f(x)的单调递减区间;
(2)若f(x)向右平移m个单位(m>0)使得图象关于y轴对称,求m的最小值;
(3)若manfen5.com 满分网manfen5.com 满分网,求cos2x的值.
查看答案
解关于x的不等式|2x-1|<2m-1(m∈R).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.