满分5 > 高中数学试题 >

椭圆C:的两个焦点为F1,F2,点P在椭圆C上,且 (Ⅰ)求椭圆C的方程; (Ⅱ...

椭圆C:manfen5.com 满分网的两个焦点为F1,F2,点P在椭圆C上,且manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过圆x2+y2+4x-2y=0的圆心,交椭圆C于A,B两点,且A、B关于点M对称,求直线l的方程.
【解析】 (Ⅰ)由题意可知2a=|PF1|+|PF2|=6,a=3,,由此可求出椭圆C的方程. (Ⅱ)解法一:设A,B的坐标分别为(x1,y1)、(x2,y2).设直线l的方程为y=k(x+2)+1,代入椭圆C的方程得(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.因为A,B关于点M对称.所以解得,由此可求出直线l的方程. (Ⅱ)解法二:设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1≠x2且,①,② 由①-②得③因为A、B关于点M对称,所以x1+x2=-4,y1+y2=2,代入③得直线l的斜率为,由此可求出直线l的方程. 【解析】 (Ⅰ)因为点P在椭圆C上,所以2a=|PF1|+|PF2|=6,a=3. 在Rt△PF1F2中,, 故椭圆的半焦距c=, 从而b2=a2-c2=4, 所以椭圆C的方程为=1. (Ⅱ)解法一: 设A,B的坐标分别为(x1,y1)、(x2,y2). 已知圆的方程为(x+2)2+(y-1)2=5, 所以圆心M的坐标为(-2,1). 从而可设直线l的方程为 y=k(x+2)+1, 代入椭圆C的方程得 (4+9k2)x2+(36k2+18k)x+36k2+36k-27=0. 因为A,B关于点M对称. 所以 解得, 所以直线l的方程为, 即8x-9y+25=0. (经检验,所求直线方程符合题意) (Ⅱ)解法二: 已知圆的方程为(x+2)2+(y-1)2=5, 所以圆心M的坐标为(-2,1). 设A,B的坐标分别为(x1,y1),(x2,y2). 由题意x1≠x2且,①,② 由①-②得③ 因为A、B关于点M对称, 所以x1+x2=-4,y1+y2=2, 代入③得=, 即直线l的斜率为, 所以直线l的方程为y-1=(x+2), 即8x-9y+25=0. (经检验,所求直线方程符合题意.)
复制答案
考点分析:
相关试题推荐
如图,正方形ABDE与等边△ABC所在平面互相垂直,AB=2,F为BD中点,G为CE中点.
(1)求证:FG∥平面ABC;
(2)求三棱锥F-AEC的体积.

manfen5.com 满分网 查看答案
设命题p:函数f(x)=x2-(2a+1)x+6-3a在(-∞,0)上是减函数;命题q:关于x的方程x2+2ax-a=0有实数根.若命题p是真命题,命题q是假命题,求实数a的取值范围.
查看答案
已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f′(x)<f(x)且y=f(x+1)为偶函数,f(2)=1,则不等式f(x)<ex的解集为    查看答案
以椭圆manfen5.com 满分网的左焦点F(-c,0)为圆心,c为半径的圆与椭圆的左准线交于不同的两点,则该椭圆的离心率的取值范围是    查看答案
设斜率为2的直线l过抛物线y2=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为坐标原点)的面积为4,则a的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.