满分5 > 高中数学试题 >

已知≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最...

已知manfen5.com 满分网≤a≤1,若f(x)=ax2-2x+1在区间[1,3]上的最大值M(a),最小值N(a),设g(a)=M(a)-N(a).
(1)求g(a)的解析式;
(2)判断g(a)单调性,求g(a)的最小值.
(1)根据已知条件a>0,知函数是二次函数,其图象是开口向上的抛物线.因此讨论对称轴:x=与区间[1,3]的关系,得到函数的单调性后再找出相应的最值,即可得g(a)的解析式; (2)通过求导数,讨论其正负,可得到函数g(a)在区间[,]上单调减,而在(,1]上单调增,因此不难得出 g(a)的最小值为g()=. 【解析】 (1)当≤a≤时N(a)=f(),M(a)=f(1), 此时g(a)=f(1)-f()=a+-2; 当<a≤1时N(a)=f(),M(a)=f(3), 此时g(a)=f(3)-f()=9a+-6; ∴g(a)=      …(6分) (2)当≤a≤时,∵g(a)=a+-2,∴g′(a)=1-<0, ∴g(a)在[,]上单调递减. 同理可知g(a)在(,1]上单调递增 ∴g(a)min=g()=.…(12分)
复制答案
考点分析:
相关试题推荐
已知函f(x)=1-2ax-a2x(a>1)
(1)求函f(x)的值域;
(2)若x∈[-2,1]时,函f(x)的最小值-7,求a的值和函f(x)的最大值.
查看答案
已知函数f(x)=manfen5.com 满分网,若函数f(x)满足f(-x)=-f(x).
(1)求实数a的值.
(2)判断函数的单调性.
查看答案
已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}
(1)若a=3,求(∁RP)∩Q;
(2)若P⊆Q,求实数a的取值范围.
查看答案
设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(manfen5.com 满分网)=1,
(1)求f(1),f(manfen5.com 满分网),f(9)的值,
(2)如果f(x)+f(2-x)<2,求x的取值范围.
查看答案
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是    .(写出所有真命题的编号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.