已知A
1,A
2为双曲线C:
的左右两个顶点,一条动弦垂直于x轴,且与双曲线交于P,Q(P点位于x轴的上方),直线A
1P与直线A
2Q相交于点M,
(1)求出动点M(2)的轨迹方程
(2)设点N(-2,0),过点N的直线交于M点的轨迹上半部分A,B两点,且满足
,其中
,求出直线AB斜率的取值范围.
考点分析:
相关试题推荐
已知函数
,且
.(e是自然对数的底数)
(1)求a与b的关系式;
(2)若f(x)在其定义域内为单调函数,求a的取值范围.
查看答案
如图,在三棱拄ABC-A
1B
1C
1中,AB⊥侧面BB
1C
1C,已知
(Ⅰ)求证:C
1B⊥平面ABC;
(Ⅱ)试在棱CC
1(不包含端点C,C
1)上确定一点E的位置,使得EA⊥EB
1;
(Ⅲ)在(Ⅱ)的条件下,AB=
,求二面角A-EB
1-A
1的平面角的正切值.
查看答案
如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).(已知在通道的分叉处,小弹子以相同的概率落入每个通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表达式.(不必证明)
(Ⅱ)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ=
,试求ξ的分布列及数学期望.
查看答案
已知函数f(x)=cos
2x-sin
2x+2
sonxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值;
(2)若f(a)=2,且a∈[
,
],求a的值.
查看答案
(本大题共2个小题,任选一题作答,若做两题,则按所做的第(1)题给分,共5分)
(1)曲线ρ=2cosθ关于直线
对称的曲线的极坐标方程为
(2)(不等式选讲)在区间[t,t+1]上满足不等式|x
3-3x+1|≥1的解有且只有一个,则实数t的取值范围为
.
查看答案