满分5 > 高中数学试题 >

对于实数a和b,定义运算“⊗”:a⊗b=,设函数f(x)=(x2-2)⊗(x-1...

对于实数a和b,定义运算“⊗”:a⊗b=manfen5.com 满分网,设函数f(x)=(x2-2)⊗(x-1),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是   
根据定义的运算法则化简函数f(x)=(x2-2)⊗(x-1),的解析式,并画出f(x)的图象,函数y=f(x)-c的图象与x轴恰有两个公共点转化为y=f(x),y=c图象的交点问题,结合图象求得实数c的取值范围. 【解析】 ∵a⊗b=,∴函数f(x)=(x2-2)⊗(x-1)=. 由图可知,当c∈(-2,-1]∪(1,2],函数f(x)与y=c的图象有两个公共点, ∴c的取值范围是 (-2,-1]∪(1,2], 故答案为 (-2,1]∪(1,2].
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ex-1,g(x)=-x2-4x-3,若有f(a)=g(b),则b的取值范围是    查看答案
已知函数f(x)=manfen5.com 满分网在区间(-2,+∞)上为增函数,则实数a的取值范围是     查看答案
若函数f(x)=x2-|x+a|为偶函数,则实数a=    查看答案
函数y=2-manfen5.com 满分网的值域是    查看答案
函数manfen5.com 满分网的定义域是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.