由圆的方程找出圆心坐标和圆的半径r,显然直线l的斜率存在,设出直线l的斜率,由直线l过(-2,0),写出直线l的方程,又直线l与圆相切,得到圆心到直线l的距离等于圆的半径,故利用点到直线的距离公式列出关于k的方程,求出方程的解即可得到直线l斜率k的值.
【解析】
由圆x2+y2=1,得到圆心坐标为(0,0),半径r=1,
显然直线l的斜率存在,设直线l的斜率为k,
由直线l过点(-2,0),得到直线l的方程为:y=k(x+2),即kx-y+2k=0,
∵直线l与圆相切,∴圆心(0,0)到直线l的距离d==r=1,
两边平方整理得:4k2=k2+1,即k2=,
则k=±.
故答案为:±