满分5 > 高中数学试题 >

已知函数(a∈R). (Ⅰ)当时,讨论f(x)的单调性; (Ⅱ)设g(x)=x2...

已知函数manfen5.com 满分网(a∈R).
(Ⅰ)当manfen5.com 满分网时,讨论f(x)的单调性;
(Ⅱ)设g(x)=x2-2bx+4.当manfen5.com 满分网时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.
(Ⅰ)直接利用函数与导数的关系,求出函数的导数,再讨论函数的单调性; (Ⅱ)利用导数求出f(x)的最小值、利用二次函数知识或分离常数法求出g(x)在闭区间[1,2]上的最大值,然后解不等式求参数. 【解析】 (Ⅰ), 令h(x)=ax2-x+1-a(x>0) (1)当a=0时,h(x)=-x+1(x>0), 当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减; 当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增. (2)当a≠0时,由f′(x)=0,即ax2-x+1-a=0,解得. 当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)单调递减; 当时,,x∈(0,1)时h(x)>0,f′(x)<0,函数f(x)单调递减; 时,h(x)<0,f′(x)>0,函数f(x)单调递增; 时,h(x)>0,f′(x)<0,函数f(x)单调递减. 当a<0时,当x∈(0,1),h(x)>0,f′(x)<0,函数f(x)单调递减; 当x∈(1,+∞),h(x)<0,f′(x)>0,函数f(x)单调递增. 综上所述:当a≤0时,函数f(x)在(0,1)单调递减,(1,+∞)单调递增; 当时x1=x2,h(x)≥0恒成立,此时f′(x)≤0,函数f(x)在(0,+∞)单调递减; 当时,函数f(x)在(0,1)单调递减,单调递增,单调递减. (Ⅱ)当时,f(x)在(0,1)上是减函数,在(1,2)上是增函数,所以对任意x1∈(0,2), 有, 又已知存在x2∈[1,2],使f(x1)≥g(x2),所以,x2∈[1,2],(※) 又g(x)=(x-b)2+4-b2,x∈[1,2] 当b<1时,g(x)min=g(1)=5-2b>0与(※)矛盾; 当b∈[1,2]时,g(x)min=g(b)=4-b2≥0也与(※)矛盾; 当b>2时,. 综上,实数b的取值范围是.
复制答案
考点分析:
相关试题推荐
已知椭圆方程为manfen5.com 满分网(a>b>0),长轴两端点A、B,短轴上端顶点为M,点O为坐标原点,F为椭圆的右焦点,且manfen5.com 满分网=1,|OF|=1.
(1)求椭圆方程;
(2)直线l交椭圆于P、Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程,若不存在,请说明理由.
查看答案
现在“汽车”是很“给力”的名词.汽车厂商对某款汽车的维修费进行电脑模拟试验,分别以汽车使用年限n和前n年累计维修费Sn(万元)为横、纵坐标绘制成点,发现点(n,Sn)在函数y=ax2+bx(a≠0)的图象上(如图所示),其中A(5,1.05)、B(10,4.1).
(1)求出累计维修费Sn关于使用年数n的表达式,并求出第n年得维修费;
(2)汽车开始使用后每年均需维修,按国家质量标准规定,出售后前两年作为保修时间,在保修期间的维修费用由汽车厂商承担,保修期过后,汽车维修费用有车主承担.若某人以9.18万元的价格购买这款品牌车,求年平均耗资费的最小值.(年平均耗资费=manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,PA=AB=1,BC=2.
(1)若E为PD的中点,求异面直线AE与PC所成角的余弦值;
(2)在BC上是否存在一点G,使得D到平面PAG的距离为1?若存在,求出BG;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网某高校在2010年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示,
(1)求第三、四、五组的频率;
(2)为了以选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.
查看答案
在△ABC中,角A,B,C的对边分别为manfen5.com 满分网
(1)求cosC;
(2)若manfen5.com 满分网,且a+b=9,求c.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.