满分5 > 高中数学试题 >

设函数f(x)=x3+ax2-a2x+m(a≥0). (Ⅰ)求函数f(x)的单调...

设函数f(x)=x3+ax2-a2x+m(a≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x∈[-1,1]内没有极值点,求a的取值范围;
(Ⅲ)若对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范围.
(Ⅰ)要求函数f(x)的单调区间,即求函数f(x)的f′(x),在根据导数与单调性的关系求解即可 (Ⅱ)要使函数f(x)在x∈[-1,1]内没有极值点,只需f′(x)=0在(-1,1)上没有实根即可 (Ⅲ)要求对任意的a∈[3,6),不等式f(x)≤1在x∈[-2,2]上恒成立,只需求当x∈[-2,2]时f(x)max≤1,即m≤9-4a-2a2在a∈[3,6]上恒成立,即求9-4a-2a2在a∈[3,6]的最小值. 【解析】 (Ⅰ)∵f'(x)=3x2+2ax-a2= 当a=0时f′(x)≥0 ∴函数f(x)的单调递增区间为(-∞,+∞) 当a>0时 由f′(x)>0得x<-a或, 由f′(x)<0得, ∴函数f(x)的单调递增区间为(-∞,-a),, 单调递减区间为 (Ⅱ)当a=0时由(1)知函数f(x)在[-1,1]上单调递增, 则f(x)在[-1,1]上没有极值点; 当a>0时∵ 由(1)知f(x)在上单调递增, 在上单调递减;则要f(x)在[-1,1]上没有极值点, 则只需f′(x)=0在(-1,1)上没有实根.∴,解得a≥3 综上述可知:a的取值范围为[3,+∞)∪{0} (Ⅲ)∵a∈[3,6), ∴≤-3 又x∈[-2,2] 由(1)的单调性质知f(x)max=max{f(-2),f(2)} 而f(2)-f(-2)=16-4a2<0 ∴f(x)max=f(-2)=-8+4a+2a2+m ∵f(x)≤1在[-2,2]上恒成立 ∴f(x)max≤1即-8+4a+2a2+m≤1 即m≤9-4a-2a2在a∈[3,6]上恒成立, ∵9-4a-2a2的最小值为-87 ∴m≤-87 故答案为(Ⅰ)当a=0时f′(x)≥0, 函数f(x)的单调递增区间为(-∞,+∞), 当a>0时函数f(x)的单调递增区间为, 单调递减区间为, (Ⅱ)a的取值范围为:[3,+∞)∪{0}, (Ⅲ)m的取值范围为:m≤-87.
复制答案
考点分析:
相关试题推荐
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
设数列{an}的前n项和为Sn,且Sn=(m+1)-man对于任意的正整数n都成立,其中m为常数,且m<-1.
(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比q=f(m),数列{bn}满足:manfen5.com 满分网,bn=f(bn-1)(n≥2,n∈N),求证:数列{manfen5.com 满分网}是等差数列,并求数列{bnbn+1}的前n项和.
查看答案
已知如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象.
(1)求函数解析式;
(2)当x∈R时,求该函数图象的对称轴方程和对称中心坐标;
(3)当x∈R时,写出f(x)的单调增区间;
(4)当x∈R时,求使f(x)≥1 成立的x 的取值集合;
(5)当x∈[manfen5.com 满分网manfen5.com 满分网],求f(x)的值域.

manfen5.com 满分网 查看答案
设三角形ABC的内角A,B,C的对边分别为a,b,c,a=4,c=manfen5.com 满分网,sinA=4sinB.
(1)求b边的长;
(2)求角C的大小;
(3)求三角形ABC的面积S.
查看答案
下列命题:
①设a,b是非零实数,若a<b,则ab2<a2b;
②若a<b<0,则manfen5.com 满分网manfen5.com 满分网
③函数y=manfen5.com 满分网的最小值是2;
④若x、y是正数,且manfen5.com 满分网+manfen5.com 满分网=1,则xy有最小值16.
其中正确命题的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.