(Ⅰ)要证:AA1⊥BC1,先说明△AA1B是等边三角形,设D是AA1的中点、连接BD,C1D,证明AA1⊥平面BC1D,即可.
(Ⅱ)求三棱锥A1-ABC的体积.转化为B-AA1C的体积,求出底面面积和高即可求解.
证明(1):因为四边形AA1C1C是菱形,所以有AA1=A1C1=C1C=CA=1.
从而知△AA1B是等边三角形.(2分)
设D是AA1的中点、连接BD,C1D,
则BD⊥AA1,由=.
知C1到AA1的距离为.∠AA1C1=60°,
所以△AA1C1是等边三角形,(4分)
且C1D⊥AA1,所以AA1⊥平面BC1D.(6分)
又BC1⊂平面BC1D,故AA1⊥BC1.(7分)
(2)由(1)知BD⊥AA1,又侧面ABB1A1⊥侧面AA1C1C,
所以BD⊥平面AA1C1C,
即B到平面AA1C1C的距离为BD.(9分)
又=,BD=.
所以==•BD=××=.(13分)
故三棱锥A1-ABC的体积为.(14分)