满分5 > 高中数学试题 >

设函数在[1,+∞)上是增函数. (1)求正实数a的取值范围; (2)设b>0,...

设函数manfen5.com 满分网在[1,+∞)上是增函数.
(1)求正实数a的取值范围;
(2)设b>0,a>1,求证:manfen5.com 满分网
(1)求出f(x)的导函数,因为函数在[1,+∞)上是增函数,即导函数大于等于0对x属于[1,+∞)恒成立,令导函数大于等于0列出不等式,解出a大于等于x的倒数,求出x倒数的最大值即可得到实数a的范围; (2)设x等于,由b大于0,a大于1,得出大于1,根据函数在[1,+∞)上是增函数,得到f()大于f(1),化简可得;设G(x)=x-lnx,且x大于1,求出G(x)的导函数,根据x大于1得到导函数大于0,所以G(x)为增函数,由x大于1,得到G(x)大于G(1)即x大于lnx,即可得到,综上,得证. 【解析】 (1)对x∈[1,+∞)恒成立, ∴对x∈[1,+∞)恒成立, 又, ∴a≥1为所求; (2)取, ∵, 一方面,由(1)知在[1,+∞)上是增函数, ∴ ∴ 即; 另一方面,设函数G(x)=x-lnx(x>1), , ∴G(x)在(1,+∞)上是增函数且在x=x处连续,又G(1)=1>0, ∴当x>1时,G(x)>G(1)>0, ∴x>lnx即, 综上所述,.
复制答案
考点分析:
相关试题推荐
一束光线从点F1(-1,0)出发,经直线l:2x-y+3=0上一点P反射后,恰好穿过点F2(1,0).      
(Ⅰ)求点F1关于直线l的对称点F1′的坐标;
(Ⅱ)求以F1、F2为焦点且过点P的椭圆C的方程;
(Ⅲ)设直线l与椭圆C的两条准线分别交于A、B两点,点Q为线段AB上的动点,求点Q 到F2的距离与到椭圆C右准线的距离之比的最小值,并求取得最小值时点Q的坐标.
查看答案
已知函数manfen5.com 满分网的图象过原点,且关于点(-1,1)成中心对称.
(1)求函数f(x)的解析式;
(2)若数列an(n∈N*)满足:manfen5.com 满分网,求数列an的通项公式an
查看答案
manfen5.com 满分网某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为manfen5.com 满分网的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.
(Ⅰ)求证:AA1⊥BC1
(Ⅱ)求三棱锥A1-ABC的体积.

manfen5.com 满分网 查看答案
已知复数z1=bcosC+(a+c)i,z2=(2a-c)cosB+4i,且z1=z2,其中A、B、C为△ABC的内角,a、b、c为角A、B、C所对的边.
(Ⅰ)求角B的大小;
(Ⅱ)若manfen5.com 满分网,求△ABC的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.