满分5 > 高中数学试题 >

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关...

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求manfen5.com 满分网的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
(Ⅰ)设圆心的坐标,利用对称的特征:①点与对称点连线的中点在对称轴上;②点与对称点连线的斜率与对称轴的斜率之积等于 -1,求出圆心坐标,又⊙C过点P(1,1),可得半径,从而写出⊙C方程. (Ⅱ)设Q的坐标,用坐标表示两个向量的数量积,化简后再进行三角代换,可得其最小值. (Ⅲ)设出直线PA和直线PB的方程,将它们分别与⊙C的方程联立方程组,并化为关于x的一元二次方程,由x=1一定是该方程的解,可求得A,B的横坐标(用k表示的),化简直线AB的斜率,将此斜率与直线OP的斜率作对比,得出结论. 【解析】 (Ⅰ)设圆心C(a,b),则,解得(3分) 则圆C的方程为x2+y2=r2,将点P的坐标代入得r2=2, 故圆C的方程为x2+y2=2(5分) (Ⅱ)设Q(x,y),则x2+y2=2,(7分) =x2+y2+x+y-4=x+y-2,令x=cosθ,y=sinθ, ∴=cosθ+sinθ-2=2sin(θ+)-2,∴(θ+)=2kπ-时,2sin(θ+)=-2, 所以的最小值为-2-2=-4. (10分) (Ⅲ)由题意知,直线PA和直线PB的斜率存在,且互为相反数, 故可设PA:y-1=k(x-1),PB:y-1=-k(x-1),由, 得(1+k2)x2+2k(1-k)x+(1-k)2-2=0(11分) 因为点P的横坐标x=1一定是该方程的解,故可得(13分) 同理,,所以=kOP , 所以,直线AB和OP一定平行(15分)
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网的长轴长为manfen5.com 满分网,离心率manfen5.com 满分网
(1)求椭圆C的标准方程;
(2)若过点B(2,0)的直线l(斜率不等于零)与椭圆C交于不同的两点E、F(E在B、F之间),且△OBE与△OBF的面积之比为manfen5.com 满分网,求直线l的方程.

manfen5.com 满分网 查看答案
设F1,F2是椭圆C:manfen5.com 满分网的左、右焦点,A、B分别为其左顶点和上顶点,△BF1F2是面积为manfen5.com 满分网的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点F2的直线l交椭圆C于M,N两点,直线AM、AN分别与已知直线x=4交于点P和Q,试探究以线段PQ为直径的圆与直线l的位置关系.

manfen5.com 满分网 查看答案
已知圆C的中心在原点O,点P(2,2)、A、B都在圆C上,且manfen5.com 满分网 (m∈R).
(Ⅰ)求圆C的方程及直线AB的斜率;
(Ⅱ)当△OAB的面积取得最大值时,求直线AB的方程.
查看答案
已知:矩形AEFD的两条对角线相交于点M(2,0),AE边所在直线的方程为:x-3y-6=0,点T(-1,1)在AD边所在直线上.
(1)求矩形AEFD外接圆P的方程.
(2)△ABC是⊙P的内接三角形,其重心G的坐标是(1,1),求直线BC的方程.
查看答案
设计算法求manfen5.com 满分网…+manfen5.com 满分网的值.把程序框图补充完整,并写出用基本语句编写的程序.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.