(I)利用成等差数列的三个正数的和等于15可设三个数分别为5-d,5+d,代入等比数列中可求d,进一步可求数列{bn}的通项公式
(II)根据(I)及等比数列的前 n项和公式可求Sn,要证数列{Sn+}是等比数列⇔即可.
【解析】
(I)设成等差数列的三个正数分别为a-d,a,a+d
依题意,得a-d+a+a+d=15,解得a=5
所以{bn}中的依次为7-d,10,18+d
依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去)
故{bn}的第3项为5,公比为2
由b3=b1•22,即5=4b1,解得
所以{bn}是以首项,2为公比的等比数列,通项公式为
(II)数列{bn}的前和
即,所以,
因此{}是以为首项,公比为2的等比数列