满分5 > 高中数学试题 >

如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=....

如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=manfen5.com 满分网
(1)求证:BC1∥平面A1DC;
(2)求二面角D-A1C-A的大小.

manfen5.com 满分网
(I)连接AC1交A1C于点G,连接DG,在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形,则AC=GC1,而AD=DB,则DG∥BC1,DG⊂平面A1DC,BC1⊄平面A1DC,根据线面平行的判定定理可知BC1∥平面A1DC. (II)过点D作DE⊥AC交AC于E,过点D作DF⊥A1C交A1C于F,连接EF,而平面ABC⊥面平ACC1A1,DE⊂平面ABC,平面ABC∩平面ACC1A1=AC, 根据面面垂直的性质定理可知DE⊥平ACC1A1,则EF是DF在平面ACC1A1内的射影,则EF⊥A1C,从而∠DFE是二面角D-A1C-A的平面角,在直角三角形ADC中,求出DE、DF,即可求出∠DFE. (I)证明:连接AC1交A1C于点G,连接DG, 在正三棱柱ABC-A1B1C1中,四边形ACC1A1是平行四边形, ∴AC=GC1, ∵AD=DB, ∴DG∥BC1(2分) ∵DG⊂平面A1DC,BC1⊄平面A1DC, ∴BC1∥平面A1DC.(4分) (II)【解析】 过点D作DE⊥AC交AC于E,过点D作DF⊥A1C交A1C于F,连接EF. ∵平面ABC⊥面平ACC1A1,DE⊂平面ABC,平面ABC∩平面ACC1A1=AC, ∴DE⊥平ACC1A1. ∴EF是DF在平面ACC1A1内的射影. ∴EF⊥A1C, ∴∠DFE是二面角D-A1C-A的平面角,(8分) 在直角三角形ADC中,. 同理可求:. ∴. ∴. ∴.(12分)
复制答案
考点分析:
相关试题推荐
体育课上练习投篮,甲、乙两名学生在罚球线投球的命中率分别为manfen5.com 满分网manfen5.com 满分网,每人投球3次.
(Ⅰ)求两人都恰好投进2球的概率;
(Ⅱ)求甲恰好赢乙1球的概率.
查看答案
设函数manfen5.com 满分网
(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为manfen5.com 满分网的值.
查看答案
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f(x)是周期函数;
②f(x)关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(x)在[1,2]上是减函数;
⑤f(2)=f(0),
其中正确的序号是    查看答案
一次观众的抽奖活动的规则是:将9个大小相同,分别标有1,2,…,9这9个数的小球,放进纸箱中.观众连续摸三个球,如果小球上的三个数字成等差算中奖,则观众中奖的概率为    查看答案
已知函数y=f(x)的图象在M(1,f(1))处的切线方程是manfen5.com 满分网+2,f(1)+f′(1)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.