(1)根据等差数列的通项公式可求得xn,进而代入直线方程求得yn,则点P的坐标可得.
(2)先设出Cn的方程,把D点代入求得a,进而对函数进行求得求得切线的斜率,即kn的表达式,进而用裂项法求得
(3)根据两集合的特点可知S∩T=T,进而推断出T中最大数a1=-17.设{an}公差为d,则根据a10的范围求得d的范围,进而根据d=-12m求得d的值.则数列{an}的通项公式可得.
【解析】
(1)∵,
∴.
∴.
(2)∵Cn的对称轴垂直于x轴,且顶点为Pn,
∴设Cn的方程为.
把Dn(0,n2+1)代入上式,得a=1,
∴Cn的方程为y=x2+(2n+3)x+n2+1.
∵kn=y'|x=0=2n+3,
∴,
∴=
=.
(3)T={y|y=-(12n+5),n∈N*}={y|y=-2(6n+1)-3,n∈N*},
∴S∩T=T,T中最大数a1=-17.
设{an}公差为d,则a10=-17+9d∈(-265,-125.)由此得.
又∵an∈T.
∴d=-12m(m∈N*)
∴d=-24,
∴an=7-24n(n∈N*,n≥2).