满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax-1,a≠0 (1)求f(x)的单调区间; (2)...

已知函数f(x)=x3-3ax-1,a≠0
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
(1)先确求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间是增区间,fˊ(x)<0的区间是减区间. (2)先根据极值点求出a,然后利用导数研究函数的单调性,求出极值以及端点的函数值,观察可知m的范围. 解析:(1)f′(x)=3x2-3a=3(x2-a), 当a<0时,对x∈R,有f′(x)>0, 当a<0时,f(x)的单调增区间为(-∞,+∞) 当a>0时,由f′(x)>0解得或; 由f′(x)<0解得, 当a>0时,f(x)的单调增区间为; f(x)的单调减区间为. (2)因为f(x)在x=-1处取得极大值, 所以f′(-1)=3×(-1)2-3a=0,∴a=1. 所以f(x)=x3-3x-1,f′(x)=3x2-3, 由f′(x)=0解得x1=-1,x2=1. 由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1, 在x=1处取得极小值f(1)=-3. 因为直线y=m与函数y=f(x)的图象有三个不同的交点, 结合f(x)的单调性可知,m的取值范围是(-3,1).
复制答案
考点分析:
相关试题推荐
设命题p:函数manfen5.com 满分网是R上的减函数,命题q:函数f(x)=x2-4x+3在[0,a]的值域为[-1,3].若“p且q”为假命题,“p或q”为真命题,求a的取值范围.
查看答案
设偶函数f(x)的定义域为(-∞,0)∪(0,+∞),当x>0时,f(x)=manfen5.com 满分网
(1)求当x<0时,f(x)的解析式;
(2)求不等式 f(2x-3)>1的解集.
查看答案
已知manfen5.com 满分网
(1)若a=1,求A∩B;
(2)若A∪B=R,求实数a的取值范围.
查看答案
某工厂生产某种产品,已知该产品每吨的价格P(元)与产量x(吨)之间的关系式为 manfen5.com 满分网,且生产x吨的成本为(50000+200x)元,则该厂利润最大时,生产的产品的吨数为    查看答案
已知函数manfen5.com 满分网是奇函数,若f(x)在区间[-2,a-1]上单调递增,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.