满分5 > 高中数学试题 >

如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的...

manfen5.com 满分网如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( )
A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果. 【解析】 ∵SD⊥底面ABCD,底面ABCD为正方形, ∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确; ∵AB∥CD,AB⊄平面SCD,CD⊂平面SCD, ∴AB∥平面SCD,故B正确; ∵SD⊥底面ABCD, ∠ASO是SA与平面SBD所成的角,∠DSO是SC与平面SBD所成的, 而△SAO≌△CSO, ∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确; ∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB, 而这两个角显然不相等,故D不正确; 故选D.
复制答案
考点分析:
相关试题推荐
F1,F2分别是双曲线manfen5.com 满分网-manfen5.com 满分网=1的左、右焦点,A是其右顶点,过F2作x轴的垂线与双曲线的一个交点为P,G是△PF1F2的重心,若manfen5.com 满分网manfen5.com 满分网=0,则双曲线的离心率是( )
A.2
B.manfen5.com 满分网
C.3
D.manfen5.com 满分网
查看答案
二次函数y=n(n+1)x2-(2n+1)x+1,当n依次取1,2,3,4,…,n,…时,图象在x轴上截得的线段的长度的总和为( )
A.1
B.2
C.3
D.4
查看答案
manfen5.com 满分网的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240,则展开式中x3的系数为( )
A.-150
B.150
C.-500
D.500
查看答案
已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
若函数f(x)=xlnx的图象在x=1处的切线为l,则l上的点到圆x2+y2+4x-2y+4=0上的点的最近距离是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.1
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.