(Ⅰ)先求导f′(x),再由x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点即f′(3)=0建立方程,解之即可;
(Ⅱ)由(Ⅰ)确定函数f(x)的解析式,再由f′(x)>0和f′(x)<0求得单调区间.
【解析】
(Ⅰ)因为f′(x)=+2x-10
所以f′(3)=+6-10=0
因此a=16
(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2-10x,x∈(-1,+∞)
∴f′(x)=
当x∈(-1,1)∪(3,+∞)时,f′(x)>0
当x∈(1,3)时,f′(x)<0
所以f(x)的单调增区间是(-1,1),(3,+∞);f(x)的单调减区间是(1,3)