登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
设函数f(x)=sin(ωx+)-1(ω>0)的导数f′(x)的最大值为3,则f...
设函数f(x)=sin(ωx+
)-1(ω>0)的导数f′(x)的最大值为3,则f(x)的图象的一条对称轴的方程是( )
A.x=
B.x=
C.x=
D.x=
先对函数求导,由导数f′(x)的最大值为3,可得ω的值,从而可得函数的解析式,然后结合三角函数的性质可得函数的对称轴处取得函数的最值从而可得. 【解析】 对函数求导可得, 由导数f′(x)的最大值为3可得ω=3 ∴f(x)=sin(3x+)-1 由三角函数的性质可得,函数的对称轴处将取得函数的最值结合选项,可得x= 故选A
复制答案
考点分析:
相关试题推荐
已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则
为( )
A.
B.
C.3
D.-3
查看答案
已知△ABC中,
,
,B=60°,那么角A等于( )
A.135°
B.90°
C.45°
D.30°
查看答案
由直线
,x=2,曲线
及x轴所围图形的面积为( )
A.
B.
C.
D.2ln2
查看答案
已知
则tanβ=( )
A.
B.
C.
D.
查看答案
函数
的零点所在的区间是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,10)
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.