满分5 > 高中数学试题 >

已知直线y=-x+1与椭圆相交于A、B两点. (1)若椭圆的离心率为,焦距为2,...

已知直线y=-x+1与椭圆manfen5.com 满分网相交于A、B两点.
(1)若椭圆的离心率为manfen5.com 满分网,焦距为2,求线段AB的长;
(2)若向量manfen5.com 满分网与向量f(s)≥ϕ(t)互相垂直(其中O为坐标原点),当椭圆的离心率manfen5.com 满分网时,求椭圆的长轴长的最大值.
(1)由椭圆的离心率为,焦距为2,求出椭圆的方程为.联立,消去y得:5x2-6x-3=0,再由弦长公式能求求出|AB|. (2)设A(x1,y1),B(x2,y2),由,知x1x2+y1y2=0,由,消去y得(a2+b2)x2-2a2x+a2(1-b2)=0,再由根的判断式得到a2+b2>1,利用韦达定理,得到a2+b2-2a2b2=0.由此能够推导出长轴长的最大值. 【解析】 (1)∵,2c=2, ∴a=,b=, ∴椭圆的方程为.…(2分) 联立,消去y得:5x2-6x-3=0, 设A(x1,y1),B(x2,y2),则,, ∴|AB|= =• =.…(5分) (2)设A(x1,y1),B(x2,y2), ∵,∴, 即x1x2+y1y2=0, 由,消去y得(a2+b2)x2-2a2x+a2(1-b2)=0, 由△=(-2a2)2-4a2(a2+b2)(1-b2)>0,整理得a2+b2>1…(7分) ∵,, ∴y1y2=(-x1+1)(-x2+1)=x1x2-(x1+x2)+1, ∴x1x2+y1y2=0,得:2x1x2-(x1+x2)+1=0, ∴, 整理得:a2+b2-2a2b2=0.…(9分) ∴b2=a2-c2=a2-a2e2,代入上式得 2a2=1+,∴,…(10分) ∵, ∴,∴, ∴,∴, ∴适合条件a2+b2>1. 由此得,∴, 故长轴长的最大值为.…(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,数列{an}满足a1=1,an+1=f(an)(n∈N+).
(1)求数列{an}的通项公式an
(2)若数列{bn}满足manfen5.com 满分网,求Sn
查看答案
如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1
(1)试求manfen5.com 满分网的值;
(2)求二面角F-AC1-C的大小;
(3)求点C1到平面AFC的距离.

manfen5.com 满分网 查看答案
在一次语文测试中,有一道把我国近期新书:《声涯》、《关于上班这件事》、《长尾理论》、《游园惊梦:昆曲艺术审美之旅》与它们的作者连线题,已知连对一个得3分,连错一个不得分,一位同学该题得ξ分.
(1)求该同学得分不少于6分的概率;
(2)求ξ的分布列及数学期望.
查看答案
已知manfen5.com 满分网=(2,cosx),manfen5.com 满分网=(sin(x+manfen5.com 满分网),-2),函数f(x)=manfen5.com 满分网manfen5.com 满分网
(1)求函数f(x)的单调增区间;
(2)若f(x)=manfen5.com 满分网,求cos(2x-manfen5.com 满分网)的值.
查看答案
(选做题)在圆内接△ABC中,AB=AC=manfen5.com 满分网,Q为圆上一点,AQ和BC的延长线交于点P,且AQ:QP=1:2,则AP=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.