设函数 ().
(Ⅰ)求的单调区间;
(Ⅱ)试通过研究函数()的单调性证明:当时,;
(Ⅲ)证明:当,且均为正实数, 时,.
已知椭圆:()上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为,,点是右准线上任意一点,过作直 线的垂线交椭圆于点.
(1)求椭圆的标准方程;
(2)证明:直线与直线的斜率之积是定值;
(3)点的纵坐标为3,过作动直线与椭圆交于两个不同点,在线段上取点,满足,试证明点恒在一定直线上.
设函数,.
(1)记为的导函数,若不等式在上有解,求实数的取值范围;
(2)若,对任意的,不等式恒成立.求(,)的值.
已知在直角坐标系中,曲线的参数方程为(为非零常数,为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.
(Ⅰ)求曲线的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数,使得直线与曲线有两个不同的公共点,且(其中为坐标原点)?若存在,请求出;否则,请说明理由.
某市统计局就本地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示月收入在,(单位:元).
(Ⅰ)估计居民月收入在的概率;
(Ⅱ)根据频率分布直方图估计样本数据的中位数;
(Ⅲ)若将频率视为概率,从本地随机抽取3位居民(看做有放回的抽样),求月收入在的居民数X的分布列和数学期望.
已知函数,,且的解集为.
(1)求的值;
(2)若,且,求 的最小值.