满分5 > 高中数学试题 >

已知数列{an}的前n项和为Sn,且对一切正整数n成立. (1)证明:数列{3+...

已知数列{an}的前n项和为Sn,且manfen5.com 满分网对一切正整数n成立.
(1)证明:数列{3+an}是等比数列,并求出数列{an}的通项公式;
(2)设bn=manfen5.com 满分网an,求数列{bn}的前n项和为Bn
(3)数列{an}中是否存在构成等差数列的四项?若存在求出一组;否则说明理由.
(1)由已知可得Sn=2an-3n,进而得an+1=Sn+1-Sn=2an+3,故an+1+3=2(an+3),数列{an+3}是等比数列,易求结果;(2)由(1)可知bn=an=n2n-n,由错位相减法可解;(3)先假设存在,由题意可得2m+2q=2n+2p,即1+2q-m=2n-m+2p-m,推出矛盾. 【解析】 (1)由an=(3n+Sn)可得Sn=2an-3n,故an+1=Sn+1-Sn=2an+3 由待定系数法得an+1+3=2(an+3)又a1+3=6≠0 ∴数列{an+3}是以6为首项,2为公比的等比数列. ∴an+3=6×2n-1, ∴an=3(2n-1).…(4分) (2)由(1)可得bn=an=n2n-n, ∴Bn=1×21+2×22+3×23+…+n×2n-(1+2+3+…+n)   ① ∴2Bn=1×22+2×23+3×24+…+n×2n+1-2(1+2+3+…+n)   ② ①-②得,-Bn=2+(22+23+…+2n)+ 化简可得Bn=2+.…(9分) (3)假设数列{an}存在构成等差数列的四项依次为:am、an、ap、aq(m<n<p<q) 则3(2m-1)+3(2q-1)=3(2n-1)+3(2p-1)∴2m+2q=2n+2p. 上式两边同除以2m,则1+2q-m=2n-m+2p-m ∵m、n、p、q∈N*,且m<n<p<q, ∴上式左边是奇数,右边是偶数,相矛盾. ∴数列{an}不存在构成等差数列的四项.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和manfen5.com 满分网
(1)求{an}的通项公式
(2)求数列{|an|}的前n项和Tn
查看答案
已知数列{an}满足a1=1,且an=2an-1+2n.(n≥2且n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项之和Sn,求Sn
查看答案
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
查看答案
某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过a米,房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.
(1)把房屋总造价y表示成x的函数,并写出该函数的定义域.
(2)当若a≥4时,多少时,总造价最底?最低总造价是多少?
查看答案
设{an}是一个公差为2的等差数列,a1,a2,a4成等比数列.
(Ⅰ)求数列an的通项公式an
(Ⅱ)数列{bn}满足bn=n•manfen5.com 满分网,设{bn}的前n项和为Sn,求Sn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.