满分5 > 高中数学试题 >

若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且...

若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是( )
A.0≤m≤4
B.0≤m≤2
C.m≤0
D.m≤0或m≥4
由对称轴x=2,根据图象可知f(x)在[0,2]上是增函数,在[2,4]上是减函数,再由对称性知f(0)=f(4),由此能求出实数m的取值范围. 【解析】 由题意得,对称轴x=-=-,即x=2, 根据图象在[0,2]上是增函数,得出其在[2,4]上是减函数, 且根据对称性f(0)=f(4) 所以0≤m≤4. 故答案为:0≤m≤4.
复制答案
考点分析:
相关试题推荐
函数f(x)=manfen5.com 满分网-cosx在[0,+∞)内 ( )
A.没有零点
B.有且仅有一个零点
C.有且仅有两个零点
D.有无穷多个零点
查看答案
函数manfen5.com 满分网的定义域为( )
A.[-4,1]
B.[-4,0)
C.(0,1]
D.[-4,0)∪(0,1]
查看答案
已知f(x)在R上是奇函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( )
A.-2
B.2
C.-98
D.98
查看答案
已知函数f(x)=x2-2ax+5,若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,则实数a的取值范围是( )
A.[2,3]
B.[1,2]
C.[-1,3]
D.[2,+∞)
查看答案
已知函数f(x)=2x-1,g(x)=1-x2,构造函数F(x),定义如下:当|f(x)|≥g(x)时,F(x)=|f(x)|,当|f(x)|<g(x)时,F(x)=-g(x),那么F(x)( )
A.有最小值0,无最大值
B.有最小值-1,无最大值
C.有最大值1,无最小值
D.无最小值,也无最大值
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.