(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得 a1=2,d=2,从而得到{an}的通项公式.
(Ⅱ) 由(Ⅰ)可得 {an}的前n项和为Sn ==n(n+1),再由=a1 Sk+2 ,求得正整数k的值.
【解析】
(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得 a1=2,d=2.
∴{an}的通项公式 an =2+(n-1)2=2n.
(Ⅱ) 由(Ⅰ)可得 {an}的前n项和为Sn ==n(n+1).
∵若a1,ak,Sk+2成等比数列,∴=a1 Sk+2 ,
∴4k2 =2(k+2)(k+3),k=6 或k=-1(舍去),故 k=6.