满分5 > 高中数学试题 >

已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R. (Ⅰ...

已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当t≠0时,求f(x)的单调区间;
(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
(I)当t=1时,求出函数f(x),利用导数的几何意义求出x=0处的切线的斜率,利用点斜式求出切线方程; (II)根据f'(0)=0,解得x=-t或x=,讨论t的正负,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0求出单调区间即可; (III)根据函数的单调性分两种情况讨论,当≥1与当0<<1时,研究函数的单调性,然后根据区间端点的符号进行判定对任意t∈(0,2),f(x)在区间(0,1)内均存在零点从而得到结论. 【解析】 (I)当t=1时,f(x)=4x3+3x2-6x,f(0)=0 f'(x)=12x2+6x-6,f'(0)=-6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=-6x. (II)【解析】 f'(x)=12x2+6tx-6t2,f'(0)=0,解得x=-t或x= ∵t≠0,以下分两种情况讨论: (1)若t<0,则<-t,∴f(x)的单调增区间是(-∞,),(-t,+∞);f(x)的单调减区间是(,-t) (2)若t>0,则>-t,∴f(x)的单调增区间是(-∞,-t),(,+∞);f(x)的单调减区间是(-t,) (III)证明:由(II)可知,当t>0时,f(x)在(0,)内单调递减,在(,+∞)内单调递增,以下分两种情况讨论: (1)当≥1,即t≥2时,f(x)在(0,1)内单调递减. f(0)=t-1>0,f(1)=-6t2+4t+3≤-13<0 所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点. (2)当0<<1,即0<t<2时,f(x)在(0,)内单调递减,在(,1)内单调递增 若t∈(0,1],f()=+t-1≤<0, f(1)=)=-6t2+4t+3≥-2t+3>0 所以f(x)在(,1)内存在零点. 若t∈(1,2),f()=+t-1<+1<0, f(0)=t-1>0∴f(x)在(0,)内存在零点. 所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点. 综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
复制答案
考点分析:
相关试题推荐
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式manfen5.com 满分网,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
查看答案
如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点.
(I)证明:MN∥平面A'ACC';
(II)若二面角A'-MN-C为直二面角,求λ的值.

manfen5.com 满分网 查看答案
现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.
查看答案
已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通项公式
(Ⅱ)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.
查看答案
已知函数f(x)=cos2manfen5.com 满分网-sinmanfen5.com 满分网manfen5.com 满分网
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(α)=manfen5.com 满分网,求sin2α的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.