满分5 > 高中数学试题 >

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的...

已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
(Ⅰ)由题意知,所以.由此能求出椭圆C的方程. (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解. 【解析】 (Ⅰ)由题意知,所以. 即a2=2b2.(2分) 又因为,所以a2=2,. 故椭圆C的方程为.(4分) (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y), 由得(1+2k2)x2-8k2x+8k2-2=0.△=64k4-4(2k2+1)(8k2-2)>0,.(6分) ,∵∴(x1+x2,y1+y2)=t(x,y), ∴, ∵点P在椭圆上,∴,∴16k2=t2(1+2k2).(8分) ∵<,∴,∴ ∴,∴(4k2-1)(14k2+13)>0,∴.(10分) ∴,∵16k2=t2(1+2k2),∴, ∴或,∴实数t取值范围为.(12分)
复制答案
考点分析:
相关试题推荐
椭圆manfen5.com 满分网上有两点P,Q,O是坐标原点,若OP,OQ的斜率之积为-manfen5.com 满分网
(1)求证:|OP|2+|OQ|2是定值.
(2)求PQ的中点M的轨迹方程.
查看答案
已知tanα=manfen5.com 满分网函数f(x)=manfen5.com 满分网其中manfen5.com 满分网
(1)求f(x)的解析式;
(2)若数列{an}满足manfen5.com 满分网an+1=f(an)(n∈N*)求证:
(i)an+1>an(n∈N*);
(ii)1<manfen5.com 满分网…+manfen5.com 满分网<2(n≥2,n∈N*).
查看答案
已知向量manfen5.com 满分网(ω>0),函数manfen5.com 满分网,且f(x)图象上一个最高点的坐标为manfen5.com 满分网,与之相邻的一个最低点的坐标为manfen5.com 满分网
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c是角A、B、C所对的边,且满足a2+c2-b2=ac,求角B的大小以及f(A)的取值范围.
查看答案
如图,在△ABC和△AEF中,B是EF的中点,AB=EF=2,CA=CB=3,若manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网的夹角的余弦值等于   
manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ABC=90°,AC=6,BC=CC1=manfen5.com 满分网,P是BC1上一动点,则CP+PA1的最小值是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.