满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=-x2+ax-3. (1)求函数f(x)在[t...

已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有manfen5.com 满分网成立.
(1)对函数求导,根据导函数与0的关系写出函数的单调性和区间,讨论所给的区间和求出的单调区间之间的关系,在不同条件下做出函数的最值. (2)根据两个函数的不等关系恒成立,先求出两个函数的最值,利用最值思想解决,主要看两个函数的最大值和最小值之间的关系,得到结果. (3)要证明不等式成立,问题等价于证明,由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,构造新函数,得到结论. 【解析】 (1)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减, 当,f'(x)>0,f(x)单调递增. ①,t无解; ②,即时,; ③,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt; ∴. (2)2xlnx≥-x2+ax-3,则, 设,则, x∈(0,1),h'(x)<0,h(x)单调递减,x∈(1,+∞),h'(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4 因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4; (3)问题等价于证明, 由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是,当且仅当时取到 设,则,易得, 当且仅当x=1时取到,从而对一切x∈(0,+∞),都有成立.
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
查看答案
椭圆manfen5.com 满分网上有两点P,Q,O是坐标原点,若OP,OQ的斜率之积为-manfen5.com 满分网
(1)求证:|OP|2+|OQ|2是定值.
(2)求PQ的中点M的轨迹方程.
查看答案
已知tanα=manfen5.com 满分网函数f(x)=manfen5.com 满分网其中manfen5.com 满分网
(1)求f(x)的解析式;
(2)若数列{an}满足manfen5.com 满分网an+1=f(an)(n∈N*)求证:
(i)an+1>an(n∈N*);
(ii)1<manfen5.com 满分网…+manfen5.com 满分网<2(n≥2,n∈N*).
查看答案
已知向量manfen5.com 满分网(ω>0),函数manfen5.com 满分网,且f(x)图象上一个最高点的坐标为manfen5.com 满分网,与之相邻的一个最低点的坐标为manfen5.com 满分网
(1)求f(x)的解析式;
(2)在△ABC中,a,b,c是角A、B、C所对的边,且满足a2+c2-b2=ac,求角B的大小以及f(A)的取值范围.
查看答案
如图,在△ABC和△AEF中,B是EF的中点,AB=EF=2,CA=CB=3,若manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网的夹角的余弦值等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.