满分5 > 高中数学试题 >

函数f(x)=log2(3x+1)的值域为( ) A.(0,+∞) B.[0,+...

函数f(x)=log2(3x+1)的值域为( )
A.(0,+∞)
B.[0,+∞)
C.(1,+∞)
D.[1,+∞)
函数的定义域为R,结合指数函数性质可知3x>0恒成立,则真数3x+1>1恒成立,再结合对数函数性质即可求得本题值域. 【解析】 根据对数函数的定义可知,真数3x+1>0恒成立,解得x∈R. 因此,该函数的定义域为R, 原函数f(x)=log2(3x+1)是由对数函数y=log2t和t=3x+1复合的复合函数. 由复合函数的单调性定义(同増异减)知道,原函数在定义域R上是单调递增的. 根据指数函数的性质可知,3x>0,所以,3x+1>1, 所以f(x)=log2(3x+1)>log21=0, 故选A.
复制答案
考点分析:
相关试题推荐
已知a=log20.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )
A.a>b>c
B.b>a>c
C.b>c>a
D.c>b>a
查看答案
函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则( )
A.f(x)是偶函数
B.f(x)是奇函数
C.f(x)=f(x+2)
D.f(x+3)是奇函数
查看答案
已知manfen5.com 满分网 的解集为( )
A.(-1,0)∪(0,e)
B.(-∞,-1)∪(e,+∞)
C.(-1,0)∪(e,+∞)
D.(-∞,1)∪(0,e)
查看答案
若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是( )
A.多于4个
B.4个
C.3个
D.2个
查看答案
函数f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是( )
A.a>manfen5.com 满分网
B.manfen5.com 满分网<a<manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.