满分5 > 高中数学试题 >

如图,矩形ABCD是机器人踢足球的场地,AB=170cm,AD=80cm,机器人...

如图,矩形ABCD是机器人踢足球的场地,AB=170cm,AD=80cm,机器人先从AD的中点E进入场地到点F处,EF=40cm,EF⊥AD.场地内有一小球从B点向A点运动,机器人从F点出发去截小球,现机器人和小球同时出发,它们均作匀速直线运动,并且小球运动的速度是机器人行走速度的2倍.若忽略机器人原地旋转所需的时间,则机器人最快可在何处截住小球?
manfen5.com 满分网
设机器人最快可在点G处截住小球,点G在线段AB上,设FG为xcm,表示出BG和AG因为三角形AEF为等腰直角三角形,可得角FAG为45°,在三角形AFG中根据余弦定理求出FG即可. 【解析】 设该机器人最快可在点G处截住小球,点G在线段AB上. 设FG=xcm.根据题意,得BG=2xcm. 则AG=AB-BG=(170-2x)(cm). 连接AF,在△AEF中,EF=AE=40cm,EF⊥AD, 所以∠EAF=45°,. 于是∠FAG=45°.在△AFG中,由余弦定理, 得FG2=AF2+AG2-2AF•AGcos∠FAG. 所以. 解得. 所以AG=170-2x=70(cm),或(不合题意,舍去). 答:该机器人最快可在线段AB上离A点70cm处截住小球.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥E-ABCD中,四边形ABCD为平行四边形,BE=BC,AE⊥BE,M为CE上一点,且BM⊥平面ACE.
(1)求证:AE⊥BC;
(2)如果点N为线段AB的中点,求证:MN∥平面ADE.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求tanα的值;
(2)若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
设M是由满足下列性质的函数f(x)构成的集合:在定义域内存在x,使得f(x+1)=f(x)+f(1)成立.已知下列函数:①manfen5.com 满分网;②f(x)=2x;③f(x)=lg(x2+2);④f(x)=cosπx,其中属于集合M的函数是     (写出所有满足要求的函数的序号). 查看答案
五位同学围成一圈依次循环报数,规定,第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2010个被报出的数为    查看答案
若不等式x2+2+|x3-2x|≥ax对x∈(0,4)恒成立,则实数a的取值范围是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.