确定∠FPF2=90°,根据△FEO∽△FPF2,可得PF2=2a,过F作x轴的垂线l,过P作PQ⊥l于Q,则PQ=PF2=2a,利用Rt△FPQ∽Rt△F2FQ,在Rt△FEO中,利用勾股定理,双曲线的焦距为2+2,建立方程,从而可求双曲线的实轴长.
【解析】
抛物线y2=4cx的焦点F2(c,0)
∵E为直线FP与以原点为圆心a为半径的圆的切点,PE=EF
∴OE为直线FP的中垂线 (O为原点)
∴OP=OF=c
又FF2=2c,O为FF2中点,OP=c
∴∠FPF2=90°(直角三角形中,直角顶点与斜边中点的连线长度为斜边的一半)
根据△FEO∽△FPF2,可得
∵EO=a,∴PF2=2a
过F作x轴的垂线l,过P作PQ⊥l于Q,则PQ=PF2=2a
又Rt△FPQ∽Rt△F2FQ,令PF=2x=2EF,∴,即,即x2=ac=EF2
∴在Rt△FEO中,OF2=EF2+EO2,即c2=ac+a2
∵双曲线的焦距为2+2,
∴a2+(1+)a-(1+)2=0
∴
∴a1=2,a2=--3 (舍)
∴实轴长为4
故选A.