满分5 > 高中数学试题 >

△ABC中,已知a=x,b=2,B=45°若解此三角形有两解,则x的取值范围 ....

△ABC中,已知a=x,b=2,B=45°若解此三角形有两解,则x的取值范围   
利用余弦定理,构建方程,根据解此三角形有两解,可得方程有两个不等的正根,从而可求x的取值范围 【解析】 由余弦定理可得:4=c2+x2-2cx×cos45° ∴ ∵解此三角形有两解, ∴方程有两个不等的正根 ∴△=2x2-4(x2-4)>0,且x2-4>0, ∴x2-8>0,且x2-4>0,x>0 ∴ 故答案为:
复制答案
考点分析:
相关试题推荐
已知△ABC中,a=manfen5.com 满分网,b=manfen5.com 满分网,B=60°,那么角A等于    查看答案
manfen5.com 满分网如图,△ABC中,AB=AC=2,BC=manfen5.com 满分网,点D 在BC边上,∠ADC=45°,则AD的长度等于    查看答案
已知函数f(x)=plnx+(p-1)x2+1.
(1)讨论函数f(x)的单调性;
(2)当P=1时,f(x)≤kx恒成立,求实数k的取值范围;
(3)证明:1n(n+1)<1+manfen5.com 满分网…+manfen5.com 满分网(n∈N+).
查看答案
在直角坐标系xOy中,椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足manfen5.com 满分网,直线l∥MN,且与C1交于A,B两点,若manfen5.com 满分网,求直线l的方程.
查看答案
某校高二年级共有学生1000名,其中走读生750名,住宿生250名,现从该年级采用分层抽样的方法从该年级抽取n名学生进行问卷调查.根据问卷取得了这n名同学每天晚上有效学习时间(单位:分钟)的数据,按照以下区间分为八组:
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分利用时间不充分总计
走读生502575
住宿生101525
总计6040100
是否有95%的把握认为学生利用时间是否充分与走读、住宿有关?
参考公式:manfen5.com 满分网
参考列表:
P(K2≥k0.500.400.250.150.100.050.025
k0.4550.7081.3232.0722.7063.8415.024
(3)若在第①组、第②组、第⑦组、第⑧组中共抽出3人调查影响有效利用时间的原因,记抽到“有效学习时间少于60分钟”的学生人数为X,求X的分布列及期望.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.