满分5 > 高中数学试题 >

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)...

已知函数f(x)=x3+mx2+nx-2的图象过点(-1,-6),且函数g(x)=f′(x)+6x的图象关于y轴对称.
(Ⅰ)求m、n的值及函数y=f(x)的单调区间;
(Ⅱ)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
(Ⅰ)利用条件的到两个关于m、n的方程,求出m、n的值,再找函数y=f(x)的导函数大于0和小于0对应的区间即可. (Ⅱ)利用(Ⅰ)的结论,分情况讨论区间(a-1,a+1)和单调区间的位置关系再得结论. 【解析】 (Ⅰ)由函数f(x)图象过点(-1,-6),得m-n=-3,① 由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n, 则g(x)=f′(x)+6x=3x2+(2m+6)x+n; 而g(x)图象关于y轴对称,所以-=0,所以m=-3, 代入①得n=0. 于是f′(x)=3x2-6x=3x(x-2). 由f′(x)>得x>2或x<0, 故f(x)的单调递增区间是(-∞,0),(2,+∞); 由f′(x)<0得0<x<2, 故f(x)的单调递减区间是(0,2). (Ⅱ)由(Ⅰ)得f′(x)=3x(x-2), 令f′(x)=0得x=0或x=2. 当x变化时,f′(x)、f(x)的变化情况如下表: 由此可得: 当0<a<1时,f(x)在(a-1,a+1)内有极大值f(O)=-2,无极小值; 当a=1时,f(x)在(a-1,a+1)内无极值; 当1<a<3时,f(x)在(a-1,a+1)内有极小值f(2)=-6,无极大值; 当a≥3时,f(x)在(a-1,a+1)内无极值. 综上得:当0<a<1时,f(x)有极大值-2,无极小值,当1<a<3时,f(x)有极小值-6,无极大值;当a=1或a≥3时,f(x)无极值.
复制答案
考点分析:
相关试题推荐
设等比数列{an}的前n项和为Sn,已知manfen5.com 满分网
(I)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插人n个数,使这n+2个数组成公差为dn的等差数列,求数列{manfen5.com 满分网}的前n项和Tn
查看答案
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数X的分布列及数学期望E(X).
查看答案
在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(Ⅰ)求证:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(1)求函数f(x)的最小值和最小正周期;
(2)设△ABC的内角A、B、C、的对边分别为a、b、c,且c=manfen5.com 满分网,f(C)=0,若向量manfen5.com 满分网与向量manfen5.com 满分网共线,求a,b.
查看答案
设a>0,若曲线y=manfen5.com 满分网与直线x=a,y=0所围成封闭图形的面积为a2,则a=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.