由等比数列的第3,5及6项成等差数列,根据等差数列的性质得到第5项的2倍等于第3项加上第6项,然后利用等比数列的通项公式化简后,得到关于q的方程,根据q不等于1且各项为正,求出方程的解即可得到满足题意q的值,进而把所求的式子也利用等比数列的通项公式化简后,得到关于q的式子,把q的值代入即可求出值.
【解析】
由a3、a5、a6成等差数列,得到2a5=a3+a6,
则2a1q4=a1q2+a1q5,由a1≠0,q≠0,得到2q2=1+q3,
可化为:(q-1)(q2-q-1)=0,又q≠1,
∴q2-q-1=0,解得:q=或q=(小于0,不合题意,舍去),
则===.
故选D