满分5 > 高中数学试题 >

集合A是由适合以下性质的函数组成:对于任意x≥0,f(x)∈[-2,4],且f(...

集合A是由适合以下性质的函数组成:对于任意x≥0,f(x)∈[-2,4],且f(x)在(0,+∞) 上是增函数.
(1)试判断manfen5.com 满分网manfen5.com 满分网是否在集合A中,并说明理由;
(2)若定义:对定义域中的任意一个x都有不等式f(x)+f(x+2)<2f(x+1)恒成立,则称这个函数为凸函数.对于(1)中你认为在集合A中的函数f(x)是凸函数吗?试证明你的结论.
(1)依据集合A的定义逐一判断即可. (2)验证(1)中属于集合A的函数是否满足凸函数的定义即可. 【解析】 (1)当x=49时,,所以f1(x)∉A; 当x≥0时,,4-6∈[-2,4),所以f2(x)∈[-2,4], 又当x>0时,单调递减,∴单调递增, 故f2(x)∈A. (2)因为f2(x)+f2(x+2)-2f2(x+1)=[4-6]+[4-6]-2[4-6] =12-6-6=,所以,f2(x)+f2(x+2)<2f2(x+1). 即f2(x)对任意x都有不等式f2(x)+f2(x+2)<2f2(x+1)成立. 故f2(x)是凸函数.
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)的二次项系数为a,满足不等式f(x)>-2x的解集为(1,3),且方程f(x)+6a=0有两个相等实根,求f(x)的解析式.
查看答案
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案
已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;      
(2)求不等式f(x)>3+f(x-2)的解集.
查看答案
已知集合A={x|x2-2x-3<0},B={x|(x-m+1)(x-m-1)≥0},
(1)当m=0时,求A∩B
(2)若p:x2-2x-3<0,q:(x-m+1)(x-m-1)≥0,且q是p的必要不充分条件,求实数m的取值范围.
查看答案
已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;
②x=-4为函数y=f(x)图象的一条对称轴;
③函数y=f(x)在[8,10]单调递增;
④若方程f(x)=m在[-6,-2]上的两根为x1,x2,则x1+x2=-8.
上述命题中所有正确命题的序号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.