满分5 > 高中数学试题 >

设,g(x)=x3-x2-3. (1)当a=2时,求曲线y=f(x)在x=1处的...

manfen5.com 满分网,g(x)=x3-x2-3.
(1)当a=2时,求曲线y=f(x)在x=1处的切线方程;
(2)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;
(3)如果对任意的manfen5.com 满分网,都有f(s)≥g(t)成立,求实数a的取值范围.
(1)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,最后用直线的斜截式表示即可; (2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立等价于:[g(x1)-g(x2)]max≥M,先求导数,研究函数的极值点,通过比较与端点的大小从而确定出最大值和最小值,从而求出[g(x1)-g(x2)]max,求出M的范围; (3)当时,恒成立等价于a≥x-x2lnx恒成立,令h(x)=x-x2lnx,利用导数研究h(x)的最大值即可求出参数a的范围. 【解析】 (1)当a=2时,,,f(1)=2,f'(1)=-1, 所以曲线y=f(x)在x=1处的切线方程为y=-x+3;(4分) (2)存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立 等价于:[g(x1)-g(x2)]max≥M, 考察g(x)=x3-x2-3,, 由上表可知:, , 所以满足条件的最大整数M=4;(8分) (3)当时,恒成立 等价于a≥x-x2lnx恒成立, 记h(x)=x-x2lnx,h'(x)=1-2xlnx-x,h'(1)=0. 记m(x)=1-2xlnx-x,m'(x)=-3-2lnx, 由于,m'(x)=-3-2lnx<0, 所以m(x)=h'(x)=1-2xlnx-x在上递减, 当时,h'(x)>0,x∈(1,2]时,h'(x)<0, 即函数h(x)=x-x2lnx在区间上递增,在区间(1,2]上递减, 所以h(x)max=h(1)=1,所以a≥1.(14分)
复制答案
考点分析:
相关试题推荐
如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

manfen5.com 满分网 查看答案
已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若manfen5.com 满分网,Sn=b1+b2+…bn,求使 manfen5.com 满分网 成立的正整数n的最小值.
查看答案
已知向量manfen5.com 满分网=(sinx,-1),向量manfen5.com 满分网=(manfen5.com 满分网cosx,-manfen5.com 满分网),函数f(x)=(manfen5.com 满分网+manfen5.com 满分网)•manfen5.com 满分网
(1)求f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2manfen5.com 满分网,c=4,且f(A)恰是f(x)在[0,manfen5.com 满分网]上的最大值,求A,b和△ABC的面积S.
查看答案
设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且manfen5.com 满分网
(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.
查看答案
函数y=f(x)满足f(x+2)=-f(x),当x∈(-2,2]时,f(x)=|x|-1,则f(x)在[0,2012]上零点的个数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.