满分5 > 高中数学试题 >

设a是实数,. (1)若函数f(x)为奇函数,求a的值; (2)试证明:对于任意...

设a是实数,manfen5.com 满分网
(1)若函数f(x)为奇函数,求a的值;
(2)试证明:对于任意a,f(x)在R上为单调函数;
(3)若函数f(x)为奇函数,且不等式f+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.
(1)函数f(x)为奇函数,故可得f(x)+f(-x)=0,由此方程求a的值; (2)证明于任意a,f(x)在R上为单调函数,由定义法证明即可,设x1,x2∈R,x1<x2,研究f(x1)-f(x2)的符号,根据单调性的定义判断出结果. (3)因为f(x)在R上为增函数且为奇函数,由此可以将不等式f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立,转化为k•3x<-3x+9x+2即32x-(1+k)3x+2>对任意x∈R恒成立,再通过换元进一步转化为二次不等式恒成立的问题即可解出此时的恒成立的条件. 【解析】 (1)∵,且f(x)+f(-x)=0 ∴,∴a=1(注:通过f(0)=0求也同样给分) (2)证明:设x1,x2∈R,x1<x2,则 == ∵x1<x2,∴ ∴f(x1)-f(x2)<0即∴f(x1)<f(x2) 所以f(x)在R上为增函数. (3)因为f(x)在R上为增函数且为奇函数, 由f(k•3x)+f(3x-9x-2)<0得 f(k•3x)<-f(3x-9x-2)=f(-3x+9x+2) ∴k•3x<-3x+9x+2即32x-(1+k)3x+2>对任意x∈R恒成立, 令t=3x>0,问题等价于t2-(1+k)t+2>0,其对称轴 当即k<-1时,f(0)=2>0,符合题意, 当即对任意t>0,f(t)>0恒成立,等价于解得-1≤k<-1+2 综上所述,当k<-1+2时,不等式f(k•3x)+f(3x-9x-2)<0对任意x∈R恒成立.
复制答案
考点分析:
相关试题推荐
设全集U=R,集合A={x|6-x-x2>0},集合manfen5.com 满分网
(Ⅰ)求集合A与B;   
(Ⅱ)求A∩B、(CA)∪B.
查看答案
设函数f(x)=x3cosx+1,若f(a)=11,则f(-a)=    查看答案
已知manfen5.com 满分网(a>0),则manfen5.com 满分网=    查看答案
关于函数f(x)=lgmanfen5.com 满分网(x≠0,x∈R),有下列命题:
①f(x)的图象关于y轴对称;
②f(x)的最小值是lg2;
③f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;
④f(x)没有最大值.
其中正确命题的序号是    查看答案
设a,b∈R,集合{1,a+b,a}={0,manfen5.com 满分网,b},则manfen5.com 满分网的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.