登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,...
函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在(a,b)内的极大值点有( )
A.4个
B.3个
C.2个
D.1个
结合图象,根据导数大于零,即导函数的图象在x轴上方,说明原函数在该区间上是单调递增,否则为减函数,极大值点两侧导数的符号,从左往右,先正后负,因此根据图象即可求得极大值点的个数. 【解析】 结合函数图象,根据极大值的定义可知在该点处从左向右导数符号先正后负, 从图象上可看出符合条件的有1点, 故选D.
复制答案
考点分析:
相关试题推荐
一正整数表如下,表中下一行中的数的个数是上一行中数的个数的2倍,
第1行
1
第2行
2 3
第3行
4 5 6 7
…
…
则第9行中按从左到右顺序的第4个数是( )
A.132
B.255
C.259
D.260
查看答案
已知f(x)是定义域为正整数集的函数,对于定义域内任意的k,若f(k)≥k
2
成立,则f(k+1)≥(k+1)
2
成立,下列命题成立的是( )
A.若f(3)≥9成立,则对于任意k≥1,均有f(k)≥k
2
成立;
B.若f(4)≥16成立,则对于任意的k≥4,均有f(k)<k
2
成立;
C.若f(7)≥49成立,则对于任意的k<7,均有f(k)<k
2
成立;
D.若f(4)=25成立,则对于任意的k≥4,均有f(k)≥k
2
成立
查看答案
(2007广州市水平测试) 一个空间几何体的正视图是长为4,宽为
的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则这个几何体的体积为( )
A.
B.
C.
D.
查看答案
三个互不重合的平面把空间分成六个部份时,它们的交线有 ( )条.
A.1
B.2
C.3
D.1或2
查看答案
在等差数列{a
n
}中,若a
2
+2a
6
+a
10
=120,则a
3
+a
9
等于( )
A.30
B.40
C.60
D.80
查看答案
试题属性
题型:选择题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.