满分5 > 高中数学试题 >

已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上...

manfen5.com 满分网已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5.过A作AB垂直于y轴,垂足为B,OB的中点为M.
(1)求抛物线方程;
(2)过M作MN⊥FA,垂足为N,求点N的坐标;
(3)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系.
(Ⅰ)抛物线的准线为 ,于是 ,p=2,由此可知抛物线方程为y2=4x. (Ⅱ)由题意得B,M的坐标,,,直线FA的方程,直线MN的方程,由此可知点N的坐标即可; (Ⅲ)由题意得,圆M的圆心坐标为(0,2),半径为2.当m=4时,直线AP的方程为x=4,此时,直线AP与圆M相离;当m≠4时,写出直线AP的方程,圆心M(0,2)到直线AP的距离,由此可判断直线AP与圆M的位置关系. 【解析】 (1)抛物线,∴p=2. ∴抛物线方程为y2=4x. (2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2), 又∵F(1,0),∴,∴, 则FA的方程为y=(x-1),MN的方程为.*k*s*5*u 解方程组,∴. (3)由题意得,圆M的圆心是点(0,2),半径为2. 当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离, 当m≠4时,直线AK的方程为,即为4x-(4-m)y-4m=0, 圆心M(0,2)到直线AK的距离,令d>2,解得m>1∴当m>1时,直线AK与圆M相离; 当m=1时,直线AK与圆M相切; 当m<1时,直线AK与圆M相交.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x4+bx3+cx2+dx+e(x∈R)在x=0和x=1处取得极值.
(1)求d的值及b,c的关系式(用c表示b),并指出c的取值范围;
(2)若函数f(x)在x=0处取得极大值
①判断c的取值范围;
②若此时函数f(x)在x=1时取得最小值,求c的取值范围.
查看答案
已知曲线f(x)=manfen5.com 满分网(x>0)上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=2+1(n∈N*),x1=1.
(1)求数列{xn}的通项公式;
(2)设四边形PnQnQn+1Pn+1的面积是Sn,求证:manfen5.com 满分网manfen5.com 满分网<4.
查看答案
一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:
(1)得60分的概率;
(2)得多少分的可能性最大?
(3)所得分数ξ的数学期望(用分数表示,精确到0.01).
查看答案
如图,已知长方体ABCD-A1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点.
(1)求证:EF∥平面ABCD;
(2)设M为线段C1C的中点,当manfen5.com 满分网的比值为多少时,DF⊥平面D1MB,
并说明理由.

manfen5.com 满分网 查看答案
设a>0,0≤x<2π,若函数y=cos2x-asinx+b的最大值为0,最小值为-4,试求a与b的值,并求使y取得最大值和最小值时的x值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.