满分5 > 高中数学试题 >

已知函数. (1)当时,如果函数g(x)=f(x)-k仅有一个零点,求实数k的取...

已知函数manfen5.com 满分网
(1)当manfen5.com 满分网时,如果函数g(x)=f(x)-k仅有一个零点,求实数k的取值范围;
(2)当a=2时,试比较f(x)与1的大小;
(3)求证:manfen5.com 满分网(n∈N*).
(1)利用函数f(x)的导数求出它的单调区间和极值,由题意知 k大于f(x)的极大值,或 k小于f(x)的极小值. (2)令h(x)=f(x)-1,由h′(x)>0得h(x)在(0,+∞)上是增函数,利用h(1)=0,分x>1、 0<x<1、当x=1三种情况进行讨论. (3)根据(2)的结论,当x>1时,,令,有,可得 ,由 ,证得结论. 【解析】 (1)当时,,定义域是(0,+∞),  求得,令f'(x)=0,得,或x=2. ∵当或x>2时,f'(x)>0; 当时,f'(x)<0, ∴函数f(x)在(0,]、(2,+∞)上单调递增,在上单调递减. ∴f(x)的极大值是 ,极小值是 . ∵当x趋于 0时,f(x)趋于-∞;当x趋于+∞时,f(x)趋于+∞, 由于当g(x)仅有一个零点时,函数f(x)的图象和直线y=k仅有一个交点, k的取值范围是{k|k>3-ln2,或}. (2)当a=2时,,定义域为(0,+∞). 令,∵, ∴h(x)在(0,+∞)上是增函数.  ①当x>1时,h(x)>h(1)=0,即f(x)>1; ②当0<x<1时,h(x)<h(1)=0,即f(x)<1;  ③当x=1时,h(x)=h(1)=0,即f(x)=1. (3)证明:根据(2)的结论,当x>1时,,即. 令,则有,∴. ∵,∴.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)将函数化为f(x)=Msin(2x+φ)+h的形式(其中manfen5.com 满分网);
(Ⅱ)在△ABC中,a、b、c分别为内角A、B、C所对的边,且对f(x)定义域中任意的x都有f(x)≤f(A),若a=2,求manfen5.com 满分网的最大值.
查看答案
已知函数f(x)=axlnx,在点(e,f(e))处的切线与直线4x-y=0平行.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在[m,m+2](m>0)上的最小值.
查看答案
设△ABC的三内角A、B、C的对边长分别为a、b、c,已知a、b、c成等比数列,且manfen5.com 满分网
(Ⅰ)求角B的大小;
(Ⅱ)若x∈[0,π),求函数f(x)=sin(x-B)+sinx的值域.
查看答案
设函数f(x)=-x2+2x+a(0≤x≤3)的最大值为m,最小值为n,其中a≠0,a∈R.
(1)求m、n的值(用a表示);
(2)已知角β的顶点与平面直角坐标系中的原点O重合,始边与x轴的正半轴重合,终边经过点A(m-1,n+3).求manfen5.com 满分网的值.
查看答案
下列四个命题中,真命题的序号是    .(写出所有真命题的序号)
①若a,b,c∈R,则“a>b”是“ac2>bc2”成立的充分不必要条件;
②当x∈(0,manfen5.com 满分网)时,函数y=sinx+manfen5.com 满分网  的最小值为2;
③命题“若|x|≥2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;
④函数f(x)=lnx+x-manfen5.com 满分网在区间(1,2)上有且仅有一个零点. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.