满分5 > 高中数学试题 >

已知函数f(x)=alnx+x2(a为实常数). (1)若a=-2,求证:函数f...

已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
(1)当a=-2时故函数 在(1,+∞)上是增函数. (2),当x∈[1,e],2x2+a∈[a+2,a+2e2].若a≥-2,f'(x)在[1,e]上非负,故函数f(x)在[1,e]上是增函数. 若-2e2<a<-2,当时f'(x)=0,当时,f'(x)<0,此时f(x)是减函数; 当时,f'(x)>0,此时f(x)是增函数. 所以此时有最值.若a≤-2e2,f'(x)在[1,e]上非正,所以[f(x)]min=f(e)=a+e2. (3)由题意可化简得(x∈[1,e]),令(x∈[1,e]),利用导数判断其单调性求出最小值为g(1)=-1. 【解析】 (1)当a=-2时,f(x)=x2-2lnx,当x∈(1,+∞),, (2),当x∈[1,e],2x2+a∈[a+2,a+2e2]. 若a≥-2,f'(x)在[1,e]上非负(仅当a=-2,x=1时,f'(x)=0),故函数f(x)在[1,e]上是增函数,此时[f(x)]min=f(1)=1. 若-2e2<a<-2,当时,f'(x)=0; 当时,f'(x)<0,此时f(x)是减函数;  当时,f'(x)>0,此时f(x)是增函数. 故[f(x)]min==. 若a≤-2e2,f'(x)在[1,e]上非正(仅当a=-2e2,x=e时,f'(x)=0), 故函数f(x)在[1,e]上是减函数,此时[f(x)]min=f(e)=a+e2. 综上可知,当a≥-2时,f(x)的最小值为1,相应的x值为1;当-2e2<a<-2时,f(x) 的最小值为,相应的x值为;当a≤-2e2时,f(x)的最小值为a+e2, 相应的x值为e. (3)不等式f(x)≤(a+2)x,可化为a(x-lnx)≥x2-2x. ∵x∈[1,e],∴lnx≤1≤x且等号不能同时取,所以lnx<x,即x-lnx>0, 因而(x∈[1,e]) 令(x∈[1,e]),又, 当x∈[1,e]时,x-1≥0,lnx≤1,x+2-2lnx>0, 从而g'(x)≥0(仅当x=1时取等号),所以g(x)在[1,e]上为增函数, 故g(x)的最小值为g(1)=-1,所以a的取值范围是[-1,+∞).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网点A、B分别是椭圆manfen5.com 满分网+manfen5.com 满分网=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
查看答案
平面上有两点A(-1,0),B(1,0),点P为圆上(x-1)2+(y-1)2=8任意一点,求|AP|2+|BP|2的最小值,并求出此时点P的坐标.
查看答案
如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是manfen5.com 满分网,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.

manfen5.com 满分网 查看答案
(1)设关于x的不等式manfen5.com 满分网的解集为P,若P={x|-3<x<-1},求实数a的值;
(2)已知函数f(x)=|x-2|+|x-4|解不等式f(x)≤4.
查看答案
在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=manfen5.com 满分网,sinB=manfen5.com 满分网
(1)求A+B的值;
(2)若a-b=manfen5.com 满分网-1,求a、b、c的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.