满分5 > 高中数学试题 >

给出两个命题:p:|x|=x的充要条件是x为正实数;q:存在反函数的函数一定是单...

给出两个命题:p:|x|=x的充要条件是x为正实数;q:存在反函数的函数一定是单调函数.则下列复合命题中的真命题是( )
A.p且q
B.p或q
C.¬p且q
D.¬p或q
首先判断两个命题的真假,再由真值表选择答案.p中,由绝对值得意义,考虑x=0的情况;q中可取特殊函数. 【解析】 p中x=0时有|x|=x,故p为假命题,-p为真命题,所以-p或q一定为真命题; q中若f(x)=在定义域上不是单调函数,但存在反函数,故q为假命题, 由真值表知A、B、C均为假命题. 故选D
复制答案
考点分析:
相关试题推荐
已知函数f(x)=alnx+x2(a为实常数).
(1)若a=-2,求证:函数f(x)在(1,+∞)上是增函数;
(2)求函数f(x)在[1,e]上的最小值及相应的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求实数a的取值范围.
查看答案
manfen5.com 满分网点A、B分别是椭圆manfen5.com 满分网+manfen5.com 满分网=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
查看答案
平面上有两点A(-1,0),B(1,0),点P为圆上(x-1)2+(y-1)2=8任意一点,求|AP|2+|BP|2的最小值,并求出此时点P的坐标.
查看答案
如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是manfen5.com 满分网,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.

manfen5.com 满分网 查看答案
(1)设关于x的不等式manfen5.com 满分网的解集为P,若P={x|-3<x<-1},求实数a的值;
(2)已知函数f(x)=|x-2|+|x-4|解不等式f(x)≤4.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.