满分5 > 高中数学试题 >

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函...

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断:
①f(x)是周期函数;
②f(x)关于直线x=1对称;
③f(x)在[0,1]上是增函数;
④f(x)在[1,2]上是减函数;
⑤f(2)=f(0),
其中正确的序号是   
首先理解题目f(x)定义在R上的偶函数,则必有f(x)=f(-x),又有关系式f(x+1)=-f(x),两个式子综合起来就可以求得周期了.再根据周期函数的性质,且在[-1,0]上是增函数,推出单调区间即可. 【解析】 ∵定义在R上的偶函数f(x)满足f(x+1)=-f(x), ∴f(x)=-f(x+1)=-[-f(x+1+1)]=f(x+2), ∴f(x)是周期为2的函数,则①正确. 又∵f(x+2)=f(x)=f(-x), ∴y=f(x)的图象关于x=1对称,②正确, 又∵f(x)为偶函数且在[-1,0]上是增函数, ∴f(x)在[0,1]上是减函数, 又∵对称轴为x=1. ∴f(x)在[1,2]上为增函数,f(2)=f(0), 故③④错误,⑤正确. 故答案应为①②⑤.
复制答案
考点分析:
相关试题推荐
在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为    . 查看答案
1996年的诺贝尔化学奖授予对发现C60有重大贡献的三位科学家.C60是由60个C原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C60分子中形状为五边形的面有    个,形状为六边形的面有    个. 查看答案
方程log2|x|=x2-2的实根的个数为    . 查看答案
已知F1、F2分别是双曲线manfen5.com 满分网-manfen5.com 满分网=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若△ABF2为钝角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,+∞)
B.(1,manfen5.com 满分网
C.(1,1+manfen5.com 满分网
D.(1+manfen5.com 满分网,+∞)
查看答案
三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有( )
A.种
B.10种
C.8种
D.16种
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.