满分5 > 高中数学试题 >

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速...

提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(I)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
(I)根据题意,函数v(x)表达式为分段函数的形式,关键在于求函数v(x)在20≤x≤200时的表达式,根据一次函数表达式的形式,用待定系数法可求得; (II)先在区间(0,20]上,函数f(x)为增函数,得最大值为f(20)=1200,然后在区间[20,200]上用基本不等式求出函数f(x)的最大值,用基本不等式取等号的条件求出相应的x值,两个区间内较大的最大值即为函数在区间(0,200]上的最大值. 【解析】 (I) 由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b 再由已知得,解得 故函数v(x)的表达式为 (II)依题并由(I)可得 当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200 当20≤x≤200时, 当且仅当x=200-x,即x=100时,等号成立. 所以,当x=100时,f(x)在区间(20,200]上取得最大值. 综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为, 即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时. 答:(I) 函数v(x)的表达式 (II) 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.
复制答案
考点分析:
相关试题推荐
计算manfen5.com 满分网÷manfen5.com 满分网=    查看答案
已知a∈{x|log2x+x=0},则f(x)=loga(x2-2x-3)的增区间为    查看答案
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是     查看答案
以a、b、c依次表示方程2x+x=1、2x+x=2、3x+x=2的解,则a、b、c的大小关系为    查看答案
已知奇函数f(x)的图象是两条直线的一部分(如图所示),其定义域为[-1,0)∪(0,1],则不等式f(x)-f(-x)>-1的解集是( )
manfen5.com 满分网
A.{x|-1≤x≤1且x≠0}
B.{x|-1≤x<-manfen5.com 满分网或0<x≤1}
C.{x|≤x<0}
D.{x|-1≤x<0或manfen5.com 满分网<x≤1}
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.