满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R, (1)若f(-1)...

已知函数f(x)=ax2+bx+1(a,b为实数),x∈R,manfen5.com 满分网
(1)若f(-1)=0,且函数f(x)的值域为[0,+∞),求F(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)设m>0,n<0,m+n>0,a>0且f(x)为偶函数,判断F(m)+F(n)能否大于零?
(1)f(-1)=0⇒a-b+1=0,又值域为[0,+∞)即最小值为0⇒4a-b2=0,求出f(x)的表达式再求F(x)的表达式即可; (2)把g(x)的对称轴求出和区间端点值进行分类讨论即可. (3)f(x)为偶函数⇒对称轴为0⇒b=0,把F(m)+F(n)转化为f(m)-f(n)=a(m2-n2)再利用m>0,n<0,m+n>0,a>0来判断即可. 【解析】 (1)∵f(-1)=0, ∴a-b+1=0①(1分) 又函数f(x)的值域为[0,+∞),所以a≠0 且由知即4a-b2=0② 由①②得a=1,b=2(3分) ∴f(x)=x2+2x+1=(x+1)2. ∴(5分) (2)由(1)有g(x)=f(x)-kx=x2+2x+1-kx=x2+(2-k)x+1=,(7分) 当或时, 即k≥6或k≤-2时,g(x)是具有单调性.(9分) (3)∵f(x)是偶函数 ∴f(x)=ax2+1,∴,(11分) ∵m>0,n<0,设m>n,则n<0.又m+n>0,m>-n>0, ∴|m|>|-n|(13分) ∴F(m)+F(n)=f(m)-f(n)=(am2+1)-an2-1=a(m2-n2)>0, ∴F(m)+F(n)能大于零.(16分)
复制答案
考点分析:
相关试题推荐
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(I)当0≤x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案
计算manfen5.com 满分网÷manfen5.com 满分网=    查看答案
已知a∈{x|log2x+x=0},则f(x)=loga(x2-2x-3)的增区间为    查看答案
设函数f(x)的定义域为D,若存在非零实数t使得对于任意x∈M(M⊆D),有x+t∈D,且f(x+t)≥f(x),则称f(x)为M上的t高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是     .如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是     查看答案
以a、b、c依次表示方程2x+x=1、2x+x=2、3x+x=2的解,则a、b、c的大小关系为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.