先根据均值不等式求得:(2-x)(4-y)的最大值,要使不等式成立,需(2-x)(4-y)≥a成立.求出(2-x)(4-y)的最小值即可.
【解析】
,即a≤(2-x)(4-y)恒成立,只需a≤(2-x)(4-y)的最小值
而(2-x)(4-y)=8-4x-2y+xy
=8-(4x+2y)+2
=10-(4x+2y)
=10-(4x+)
令f(x)=10-(4x+) x∈[1,2]
则导数f'(x)=-(4-)=≤0
故f(x)在x∈[1,2]是减函数
所以当x=2时取最小值0
即(2-x)(4-y)的最小值为0
所以a≤0